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LEITER TO THE EDITOR 

Intensity fluctuations from a one-dimensional random 
wavef ront 

J H Hannay? 
Department of Mathematics, University of Birmingham, PO Box 363, Birmingham 
B15 2TT, England 

Received 4 June 1982 

Abstract. A wave with an irregular wavefront develops intensity fluctuations through 
natura1 focusing as it propagates in free space. The moments (I") of the intensity 
distribution are calculated in terms of the wavefront randomness for a one-dimensional 
wavefront, in the short wavelength limit. 

It is of interest in several different contexts to understand the fluctuations of intensity 
which develop in the free propagation of a monochromatic wave which has, initially, 
irregularity only in its phase-that is, a random wavefront. Twinkling starlight, for 
example, is produced by the random wavefront emerging from the upper atmosphere, 
disturbed by passage through its irregular refractive index. Similar twinkling 
phenomena occur in radio astronomy and ocean acoustics. 

Here I shall show how the observed moments of intensity ( I " )  (wavefront ensemble 
average) are related to the randomness of the wavefront for the simplified case of a 
corrugated or essentially one-dimensional random wavefront. As the term wavefront 
suggests, it is the geometrical optics, short wavelength, limit which will be considered, 
and the results will be, in this limit, exact. This important extreme of the long-standing 
general problem of intensity fluctuations from a random phase wave had admitted 
only partial solution (Shishov 1971, Buckley 1971, who obtained (I2)) until Berry 
(1977) pointed out that the moments ( I " )  in the geometrical limit are determined 
by the natural focusing which produces caustics, that is, by the hierarchy of optical 
catastrophes (Berry and Upstill 1980, Berry 1976, Arnold 1972). As the wavelength 
A is reduced, the focusing becomes sharper-the diffraction becomes finer-and the 
intensity moments increase. From the geometry of catastrophes alone, Berry deduced 
the different asymptotic wavelength dependences of the moments: ( I")= k ",, where 
k = 27r/A and the twinkling exponents v, are universal rational numbers, independent 
of the wavefront randomness which enters only in the constant of proportionality to 
be calculated here. In spite of the fundamental conceptual role played by caustics 
and catastrophes in this theory, it is actually possible for the case of the one-dimensional 
wavefront to derive the central result without their explicit support, and this is the 
course to be adopted here, a complete account being given elsewhere (Hannay 1982). 

Consider a one-dimensional irregular wavefront propagating in two-dimensional 
free space and described by the distance function S(x) (figure 1) to a fixed observation 
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Figure 1. Irregular wavefront described by its distance S(x) from a fixed observation 
point as a function of arc length x. 

point. We shall take the intensity on the wavefront to be everywhere unity, the 
generalisation to non-uniform or random intensity being straightforward. Typically 
there will be one or more points on the wavefront where dS(x)/dx = 0, that is, where 
the wave normal, or ray, passes through the observation point. In the short wavelength 
limit it is the behaviour of the function S ( x )  in the neighbourhood of these points 
which determines the observed intensity. If, for example, the distance function S(x)  
varies only slowly in the neighbourhood, then the wavefront is rather well ‘focused’ 
on the observation point and the intensity contribution from that point is high, and 
limited ultimately by diffraction. 

It is the occurrence of such focusings which determines the intensity moments ( I”)  
in the short wavelength limit. They can be classified according to the number of 
consecutive derivatives in the local Taylor expansion of S which vanish: the lowest- 
order focus is one in which just the second derivative d2S/dx2 is zero, but if all the 
higher ones up to and including the nth, but not the (n + l)th, are zero too, we shall 
say that we have an n th-order focus (or catastrophe A,, ; for example, at a third-order 
focus there is a catastrophe A3-the ‘cusp’). If the joint probability density of the 
first 1 derivatives of S at position x (as well as the zeroth) is denoted by the function 
P:’(SI, SI-1, . . . , SI, So),  where Si = d’S(x)/dx’, then we may introduce an n-focus 
probability: 

(1) 

In words, this is the joint probability that there is a zero of the function S,(x) in the 
interval dx about x, and that the values of the lower derivatives there lie in the 
respective intervals dS,-l, dS,-2, . . . , dS1 about the value zero, while the zeroth and 
(n + 1)th derivatives lie in the ranges dSo and dS,+l about the values SO and 
The reason for this definition will become clear in the next paragraphs. 

Next we need the observed field I,$ due to an n-focus. We must not, however, 
restrict attention to a precise n-focus because in the k + 00 limit the slightest deviation 

P ? + ’ ) ( S , + I ,  O,O, . . . , SO)/S,+ll dS,+l dS,-l dS,-2. .  . dSO dx. 
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from a perfect n-focus will change 4 dramatically. (In contrast, the probability density 
P, appropriate to an infinitesimally imperfect n-focus will still be that in (1) since P, 
is, by assumption, smooth.) If a wavefront with an n-focus is slightly disturbed in a 
general way, the first n derivatives of its distance function are no longer zero. It is 
appropriate (for the purpose of applying the probability distributions just constructed) 
to consider the Taylor expansion about the position where S,,(x) = 0. This varies with 
the disturbance, but it is guaranteed to exist since the disturbance is slight, and Sn+l # 0 
by construction. (Indeed, given the disturbed wavefront alone, it is the only non- 
arbitrary point about which to expand.) With X measuring distance from this point 
the expansion is 

x n - 1  x”-2 

+sn-l- + S A -  + * .  . + s 1 x + s o .  Sn+l- 
Xn+l 

(n + l)! (n - l)! (n -2)! 

Here, as for a perfect n-focus, the term Xn+’ ,  whose coefficient is by definition 
non-zero, dominates all higher-order terms which can therefore be disregarded. 
(Catastrophe theory justifies this properly.) The consequent wavefield in the short 
wavelength limit is determined by this Taylor expansion through the diffraction integral 

eikSo exp[ ik(S,,+l-----  Xnr l  +sfl-l--- X“-’ + .  . . +SIX)] dX. (3) 
(n + l)! (n - l)! 

(The symbol = is to mean that the ratio of the two sides tends to unity as k +CO. )  

As usual with asymptotic integrals (stationary phase integrals for example), the local 
(X-0)  form of the integrand can safely be extended out to *CO because both the 
true integral and the approximating one have negligible contributions from the wings 
(1x1 large) where the integrands differ-hence the infinite limits in (3). The integral 
falls to zero for large positive or negative values of S1, . . . , S,-l because the integrand 
then has fine oscillations and narrow stationary regions (as measured, say, by the 
range of X for which the phase lies within 21r of its stationary value). The rate at 
which it falls obviously increases with k so that as k + 03 the field 4 drops to zero 
even for infinitesimal disturbances of Sn-’,. . . , SI. The focus has become infinitely 
sharp as expected in the geometrical limit. 

By now raising I = (41’ to the mth power, multiplying by the probability ( l ) ,  and 
integrating over all the variables whose differentials appear there, we obtain the 
preliminary result; the contribution, ( Im), ,  say, of n-focusing to ( I m ) :  

k - t x  

30 

in -1 1(2m -n-21/2!n i l l  s ; m  is,, + 1 1 - ( 4 m  --n * + n  l / Z n  + 11 
= Jl‘k 

-30 

XPPc1’(S,,+1, 0, 0, . . . , 0, So) dSo dSn+l dx (4) 
where X is a numerical constant depending only on m and n, which is written out 
below. For the present, the important constant is that derived by Berry, the k exponent, 
i(n - 1)(2m - n - 2 ) / ( n  1). For any given moment ( I m ) ,  the focus order n for which 
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the exponent is greatest dominates the moment as k + 00. Thus each moment is 
determined by a single particular order of focusing, easily found as follows. For each 
focus order n the exponent is a linear function of m shown in figure 2 and the chain 
of uppermost line segments gives the dominant exponent-the twinkling exponent. 

I 

m 

Figure 2. The twinkling exponent Y, (full line) as a function of m (considering m as a 
continuous variable) constructed from the n-focus exponents (broken). 

The range of m for which n is dominant is easily shown to be &I + n + 2) < m < 
$[(a + 1)' + (n  + 1) + 21 and inverting this relation we obtain the dominant focusing 
order 

( 5 )  

We may expect ambiguity for moments m for which 16m -7  is the square of an odd 
number so that $[(16m -7)'"- 11 is already an integer. Indeed, these 'exceptional' 
moments, which include the important moment ( I 2 ) ,  require a more detailed analysis 
of which only the results are given below. For non-exceptional moments, though, the 
result for ( I" )  may be written down directly. All we need to do so is the assurance 
that interference between separate n-foci need not be accounted for (and this can be 
verified by showing that, for m > 2, the probability of multiple significant n-foci 
occurring in the same realisation of the random wavefront vanishes as k + 00). Given 
this, (I") is simply (I"),, with n given by ( 5 ) .  In full 

(I") = [ n ! ~ - ( n  - 2 ) ! .  . . 2 ! R m ] k " -  JJJ  s," 

n = integer part of $[(16m -7)'"- 13. 

m 

k+m 
-m 

with positive real constants km, v,, R, defined by 

km = (4m -n2+n) /2 (n  + l), 

v, = (n - 1)(2m - n - 2)/2(n + l), 
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2m 

+s"-~-+.  tn-l . . +sl&)] dtl  ds,-1.. . dsl. 
n - 1  (9) 

This last constant Qm has direct catastrophe theoretical significance. The parentheses 
contain the catastrophe potential function of the catastrophe A, (in the privileged 
'quasihomogeneous' form where each 'control' variable s multiplies a single power 
of the 'state' variable 6, thus admitting mutual scaling (Arnold 1974)). The argument 
of the modulus signs in (9) is then the standard form (Berry and Upstill 1980) of the 
characteristic diffraction pattern ('diffraction catastrophe') of A,, and R, is therefore 
the complete integral of the mth power of the diffraction catastrophe intensity. For 
example, the diffraction catastrophe for a simple caustic (A2, the 'fold') is the Airy 
function, whose integral representation is seen in Cl3. Thus 

m 
f13 = ( 2 ~ ) ~  I-, Ai6(x) dx = 9.07, 

and therefore 
W 

(I3) = 28.8k1l3 111 S031S31-2/3P(3)(S3, 0, 0, So) dS3 dSo dx. (11) 
k+m 

-m 

The exceptional moments (Im), for which 16m -7  is the square of an odd number, 
require a more careful analysis because from ( 5 )  two different catastrophes, A,, and 
AnV1 where n = $[(16m - 7)'/2 - 13, are exchanging dominance. With this designation 
of n the result (Hannay 1982) is that (6) is modified by the substitution n + n - 1 
within the square bracket, and multiplication by a factor (2 In k ) / ( n  + 1) for m # 2, 
or three times this for m = 2. Thus for m # 2 

2 
( I " )  = - k v m  In k [ ( n  - 1)!'(n -3)! . . . 2!Qk] k + a n + 1  

m 

x 11 SO"PI;"'(O, 0, . . . , So) dSo dx 
-m 

where Qk is defined by (9) with n replaced by n - 1. The S,,+l in (6) has been 
integrated out by virtue of the identity pm = 1, from ( 5 ) ,  for the exceptional moments. 
For m = 2 which is especially exceptional, the result is three times this, namely 

W 

( I 2 )  = 2 In k 1j S02Pi2'(0, 0, SO) dSo du. 
k + m  

-m 

An important sequence of specialisations is (i) to paraxial optics, where the 
wavenormals everywhere make only small angles with a principal direction of propaga- 
tion, (ii) to a stationary random wavefront whose deviation from a plane is a stationary 
random function, (iii) to a stationary Gaussian random function, whose spectral 
components have independent random phases. Under these specialisations the result 
(13) for ( I 2 )  reduces to those derived by Shishov (1971) and Buckley (1971). 



L66 Letter to the Editor 

References 

Arnold V I 1972 Funcr. Anal. Appl. 6 222-4 
- 1974 Russ. Marh. Surveys 29 10-50 
Berry M V 1976 Adu. Phys. 25 1-26 
- 1977 I. Phys. A: Marh. Gen. 10 2061-81 
Berry M V and Upstill C 1980 Progress in Optics vol18, ed E Wolf (Amsterdam: North-Holland) pp 257-346 
Buckley R 1971 Ausr. J. Phys. 24 351-71,373-96 
Hannay J H 1982 Oprica Acra to appear (December) 
Shishov V I 1971 Izv. Vuz. Radiofiz. 14 85-92 


